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I: Exascale Architectures 

•  Then, now and beyond 
• From fast, hot … 
• To parallel, cooler 
• To  billion-way parallel, 
heterogeneous, unreliable 



Single 
node  
P = 1 

Multi 
node  
P = P x 
1,000,000 

ILP  
P = P x 4 

Multi core 
P = P x 
100 

Multi 
threaded 
P = P x 4 

Toward Exascale 

Fixed power per chip 
More cores, threads per chip 

1.6 billion-way parallelism 
Demands algorithm 

 redesign 

Future systems
 will consist of
 millions of nodes 

x 4 

x 1,000,000 

x 100 x 4 

150MW 

150MW 

150MW 
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Single node  
•  P = 1 
•  E = 150W 

Multi node  
•  P = P x 

1,000,000 
•  E = 150 MW 
•  4-way – 

Multicore 
peak 
performance 
– 93GFLOPS 

Accelerated 
•  P = P x 

30,720 
•  Gforce 8800 

peak 
performance 
933 
GFLOPS 

•  E = 300 MW 

Acceleration & Power for fit 
some (but not all) apps 

• Ex: GPU
 accelerated is
 5 x faster
/watt 
• Will not work
 for  all  apps
 but can
 benefit some 

X 1000,000, 

E=150 MW 

4-core 

x 30,720 



Importance of Network Power 

•  Network power will
 increase in importance   
– As high as 60-70%

 system 
– DVFS and link throttling

 options  to save energy 

•  Needs algorithm
/software redesign 



 Process Variability 

• Manufacturing  is imperfect 
• Die for 4 chips@ 16 cores 

• Top fast, high leak 
• Bottom slow, low leak 
• Variations within chip 

• Reorganize  computations to 
model  variations 
• Schedule  and load balance 
for performance and energy 
• Algorithms/software will have 
to  model these variations 



Failures  & Soft-Errors 
• Components will fail in 100 core chips 

• Not cost effective to throw out chip 

• Use cores in diminished capacity 
• Example: failure of one functional unit 

• Disable core if unusable 

• Soft errors (bit flips) in low V regimes & 
algorithm correctness 

• Algorithms/software have to be 
redesigned to be adpative 



Caches & Memory 

CPU MEM 

board package substrate 

CPU MEM CPU 
MEM 

 Caches  not useful for applications w/o reuse or long 
reuse distances  
 Alternatives such as user programmable memories that 
are power efficient 
 Options for data-staging to mask latency 
 Algorithm/software reorganization 



II: Energy-Aware Scaling 

•  Exploiting concurrency  & managing 
power for O(N) sparse graph/matrix  
– Algorithms/library design for billion way 

parallelism and dynamic adaptivity for 
energy efficiency 
• Cross node & network 
• At node 



Sparse/Irregular Data

-Driven Computations  
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Application requirements->
 algorithm selection + tuning 
-> H/W, S/W adaptivity 



Partition and Map to MPP Nodes 



  Grow problem size with number of
 nodes for weak  (iso-efficient) scaling   

Cross Node Scaling 



Torus Network: Managing Power 

Across nodes:
 compute &
 communicate
 phases 

•  Can network link
 shutdown  
– Save energy for a

 kernel? 
– Save energy even at

 a collective
 communication? 



Network Energy & Weak Scaling 

FFT                          Mat-Vec 

Number of nodes Number of nodes 



Link Shutdown in Collective 
• Many links remain
 unused. For
 reduce, it’s 66% 

• Implement simple
 link shutdown (LS)
 hardware in the
 net 

• Library code X  LS
 hardware can
 utilize link
 shutdown 

Reduce Operation, 512 node torus 



II: Energy-Aware Algorithms 

– Node:  
• Scheduling for energy and reliability 



–  Fixed problem energy & performance  efficiency at a
 node is key  

–  Critical path scheduling for performance, energy 
–  Model core variations for load balance 

At Node Efficiency 



Measuring Energy Efficiency 
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Same code  on two different systems A and B 

B 
slow, low 

fast, high 

Equal energy (PDP)
 does not differentiate A
 from B 

EDP=16 

EDP=4 

EnergyDelayProduct
 (Energy X Time) is lower 
for faster system A 

A 

B 

A 



Scenarios 
1.  Change number of cores 
2.  Change number of cores and number of threads 
3.  Change number of cores, number of threads, and voltage/frequency

 levels   
Mechanism 

Helper thread + dynamic scheduling 
Function-based adaptivity 

Energy-Aware Adaptation to Failures 
Program Execution 

16 threads on 16 cores 
@maximum frequency 

? 

2 cores go down 

? threads on ? cores 
@ ? frequency 
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Resiliency Issues in Multicore 

•  Run away
 leakage on
 idle cores 

•  Thermal
 emergencies 

•  Transient
 errors 
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(16,14) 

EDP Landscape  for  Multigrid 

(16,16) Two cores 
go down 

Scenario 1 

(16,9) 

20% reduction 

Scenario 2 

(11,11) 
52% reduction 

# threads # cores 

Scenario 3 
56% reduction (14,14) 

Best EDP 
adaptivity? 

Monitor/ 
Model/ Adapt 

[Ding, Kandemir, Raghavan, Irwin, IPDPS’08] 



II: Energy-Aware Algorithms 

– Node:  
• Data staging and user-programmable memories 



Data Staging in Multicores 

• Efficiency: performance, power 

Data  when  and
 where  
it can be computed
 upon (data locality) 

Power  when  and where  
it enables useful 
activity (power locality) 

•  Efficiency: Fraction relative to DGEMM  for sparse matrix
 vector multiplication (SMV)  

•  SMV varietals: CSR format: RCM, RND 
RCM enhances locality in x … Toledo,  Yelick.. 

yAx 

RCM 

RND 



Temperature Evolution (4-core) 
DGEMM,  SMV_RCM, SMV_RND 
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F 
I 

L S 

D$ I$ 

Temp: 0                65  C 

SMV_RCM DGEMM SMV_RND 

(1) (2) (3) 



DGEMM, SMV Profiles 

DGEMM         RCM           RND                           DGEMM         RCM            RND                              DGEMM            RCM                RND   

        Instruction Mix                      Energy/ 1 B Floats                        Time / 1 B Floats 



Scratch Pad Memory 

SPM in L2 

 L2 memory  split into: 
1.   Cache + SPM (Conf A) 
2.   Entirely SPM (Conf B) 
3.  SMV-CSR-RCM: A in SPM

 ( Raghavan et al. in
 IPDPS 08) 

Performance Energy (EDP) 
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Summary 

•  Algorithm/software  redesign needed for sparse/irregular
 data-driven kernels 
–  Multi-level parallelism—ILP to Multi-node 
–  Controlling network energy dynamically  
–  At node  scheduling for performance, power, h/w

 variations 
–  Software control of data-staging  
–  Reliability/correctness in soft-error regimes 

•  APIs/Abstractions/Languages  for revealing/exploiting S
/W  & H/W features for cross-layer optimizations   

•  System support  for state modeling and recovery 
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